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The anharmonic oscillator problem: a new algebraic solution 
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Czechoslovakia 

Received 25 July 1984, in final form 7 November 1984 

Abstract. The second-order (one-dimensional or radial) differential Schrodinger equation 
with the potential V( r )  = pr2 + ur4 may be re-interpreted as a difference equation of the 
fourth order (indeed, the Hamiltonian is a pentadiagonal matrix in the standard harmonic 
oscillator basis in ) ,  n = 0, 1,. . .). Thus, we construct its four independent general solutions 
by purely algebraic means, via expansions in powers of ( n  + l)-’’4. Next, preserving the 
analogy between difference and differential equations, the physical wavefunctions ( n (  CL) 
and their energies are determined by the matching of the ‘Jost’ and ‘regular’ solutions. 
Finally, using the simplest matching condition ‘at the origin’, the resulting numerical 
algorithm is demonstrated to be both stable and quickly convergent. 

1. Introduction and summary 

Small vibrations in a deep potential may be described by the harmonic oscillator model. 
The Schrodinger equation also containing the first anharmonic correction 

1 = 0, 1,. . d2 1(1+1) +- 
r2  v > o  (1.1) 

therefore finds numerous applications, e.g., in molecular physics (Lister et a1 1978). 
A number of papers has been devoted to its solution; an up to date list may be found, 
e.g., in the papers of Arteca et a1 (1984). 

One of the most interesting methodical applications of (1.1) lies in its interpretation 
as a zero-dimensional field model (Itzykson and Zuber 1980). Hence, a perturbative 
treatment of (1.1) is of particular interest-for example, Marziani (1984) recalls a 
number of references studying the efficiency of the resummation techniques of Borel, 
Padk, Aitken, continued fractions, Euler, Levin, Brezinski, Wynn and others. 

Often, the inherent inconsistencies of the Rayleigh-Schrodinger perturbative 
approach (cf, e.g., the discussion by Flessas er a1 1984) necessitate major modifications: 
Makarewicz (1984) reviews the various rearrangements of the Hamiltonians Ho and 
HI in combination with JWKB ideas and hypervirial relations, Au er a1 (1983) recom- 
mend switching to the logarithm of I), Graffi and Grecchi (1975) replace the sums by 
matrix continued fractions, etc. The latter work also inspired the fixed-point perturba- 
tion theory (Znojil 1984a) using, in an implicit formulation, the inverse model-space 
dimension as a ‘natural’ small expansion parameter for all the anharmonic-oscillator- 
type Hamiltonians. 

0305-4470/85/132541+ 14$02.25 0 1985 The Institute of Physics 2541 



2542 M Znojil, K Sandler and M Tater 

In the present paper, we shall further develop the application of the general 
fixed-point perturbative idea to anharmonic oscillators ( 1 . 1 ) .  We shall start from the 
following three modifications of the formulation of the problem. 

(i)  We convert the general (non-zero) value of the anharmonic coupling v to one 
(by a rescaling of the coordinate, r + pr, with p 6 v  = 1,  and by multiplication of ( 1 . 1 )  
by the constant p2) .  

(ii) In the unperturbed (harmonic oscillator) basis In), n = 0 , 1 , .  . . , we then rewrite 
the differential equation ( 1 . 1 )  as an algebraic linear set of equations 

a0 bo CO (01 *)I  

bo a1 bl c1 

[CO :: 4f ; .][E]- . . .  , 

(1.2) 
a, = 6n2+ ( 1  1 + 61+ 2p)n + 1 2 +  (5  + p)1+$(21+6p)  - E 

b, = (4n + 21 + 4 + p )P ,  Cn = P n P n + l  

pn = ( n + ~ ) ” ~ ( n + l + $ ) ” ~ .  

(iii) We reinterpret (1.2) as a difference equation for the projections (n l+ )  (of 
fourth order) (Korn and Korn 1968). 

Our construction of the solution + and E will be based on analogies of (1.2) to 
the differential equations. In § 2, we explain the method on the truncated equation 
(1.2). In particular, we recall some relevant results of Znojil (1983, 1984b, c, to be 
referred to as I, I1 and 111, respectively), notice that the truncation simplifies the 
asymptotic boundary conditions and introduce the (independent pairs of the) ‘regular’ 
( 9  2.1) and ‘Jost’ (0 2.2) general solutions. The physical bound states are then charac- 
terised by the matching of the ‘regular’ and ‘Jost’ solutions at some four distinct points 
n = K1, K 2 ,  K ,  and K4 (0 2.3). 

Our most important result is presented in § 3 where we succeed in the elimination 
of the infinite-dimensional limiting transition (which would be purely numerical, cf 
also Wilkinson 1965) and construct directly the four independent power-series general 
solutions to (1.2), 

These solutions are derived in a systematic way-the coefficients c i )  are specified here 
up to m = 5 (§  3.4) or, implicitly, up to m = 16 (§  3.5).  

In 04, we analyse the matching conditions. We prove that they are practically 
equivalent to the simple truncation (§ 4.1) or leading-order fixed-point prescription 
( 9  4.2) in the Ki >> 1 asymptotic region. For K, = O( l ) ,  the matching conditions are 
given specific difference forms (§ 4.3 and appendix). 

In § 5, we underline that Re cg’ = 0 and Re cp) < 0 (for j = 1,2) or Re c y ) >  0 (for 
j = 3,4).  This implies that there are just two ‘Jost’ solutions, in full analogy with 0 2. 
This is the most favourable situation from the purely practical point of view. 

We may use (1.2) as the stable recurrences defining the components of bound states 
( n J $ )  from pairs of arbitrary initialisations (§  5.1). Moreover, we may also introduce 
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a discrete analogue of the Jost function (cf Newton 1965), the zeros of which determine 
the binding energies (§  5.2). The corresponding recurrent eigenvalue/eigenvector 
algorithm proves to be stable and extremely efficient in the numerical tests. 

We may summarise our treatment of the anharmonic oscillator (1.1) as an analytic 
continuation of projections ( n l J I )  to the complex n-plane. It is similar to Regge theory 
(see Newton 1965) but its difference-equation background represents a new point of 
view. It enables us to represent wavefunctions by closed formulae of the type (1.3) 
and, presumably, to extend the non-numerical analysis to the ‘Jost function’ or even 
to its energy zeros. 

Some of the present results are quite surprising. 
(i) When we return to the non-rescaled problem and consider the strong anharmonic 

coupling v >> 1, the present formula (1.3) contains the small expansion parameter Y - ~ ” .  

Its exponent differs from the usual Y - ” ~  rule (see, e.g., Arteca er al 1984). 
(ii) For a small coupling Y << 1, formula (1.3) exhibits anew the non-perturbative 

character of the anharmonicity. 
(iii) In comparison with the not very exciting zero-order result of 11 ( cb . ‘ )= i~ ,  

j = 1,2 ,3  and 4), a lot of physics is clarified by the first non-trivial coefficient c?):  
( a )  the double degeneracy of the ‘Jost’ solutions of the truncated equations ( §  2) 

survives the infinite-dimensional limiting transition and this is extremely favourable 
in the numerical context; 

( b )  an unexpected n >> 1 asymptotic oscillation (Im c y )  # 0) appears, contrasting 
with the smooth asymptotic behaviour of the Hamiltonian itself. 

(iv) The higher-order corrections (c:), m > 1) keep a simple form as functions of 
the parameters. This clarifies the structure of JI in a non-numerical manner-its smooth 
change during the transition to the double-well potential ( p  < 0), etc. The m > 1 
corrections are also essential in improving the standard variational estimates. 

(v) The stability and extreme efficiency of the recurrent eigenvalue/eigenvector 
algorithm of D 5 follows from the leading-order part of (1.3). We may expect (conjec- 
ture) that the similar properties of recurrences will remain valid for the higher anhar- 
monicities rZq,  q 2 3 as well. 

2. The truncated Hamiltonian and the method 

In the variational setting, we may truncate equation (1.2). Its cut-off ( M +  1)- 
dimensional subsystems for the tilded approximants of JI 

Q [ M l J  = 0 

a 0  * . .  bo CO ) q!!)) (2.1) i c M - 2  bM-1 aM 

Q[Ml= 

will give the exact result in the limit M + 00 only, 

J ( n )  + ( 4 4 )  i - + E  M+0O. 

For a finite M <a, the solution of (2.1) may be obtained by standard methods 
(Wilkinson 1965) as well as by our method ( I ,  11,111). The latter approach may be 
summarised as follows. 
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2.1. The ‘regular’ n -P n -k 1 recurrences 

The first row of ( 2 . 1 )  is a definition of $ ( 2 ) .  It is a linear function of the two unknown 
parameters $(O) and $ ( 1 ) .  Similarly, the second row gives J ( 3 )  as a function of $(O) 
and $ ( 1 )  after the appropriate insertion. In this way, the general formula 

$ ( k )  = f f k $ ( 0 ) + P k $ ( l )  

is obtained (I). At an arbitrary energy, it defines the two independent ‘regular’ solutions 
(say, f f k  and P k )  which satisfy even our M = CO equation ( 1 . 2 )  and are not normalisable 
in general. 

In the truncated equation ( 2 . 1 ) ,  the last two rows are redundant as definitions and 
represent rather the two independent truncation requirements 

$ ( M  + 1 )  = 0 $ ( M + 2 ) = 0 .  ( 2 . 3 )  

This is a physical ‘boundary condition’ for our ‘regular’ solution ( 2 . 2 ) .  It has to fix 
$( 1 ) /  $(O) and the energy. 

A combination of ( 2 . 2 )  with ( 2 . 3 )  

( f f M + l  B M + 1 ) (  $!:;) = 0 
a M + 2  P M + 2  

is formally equivalent to the standard secular equation 

det QCM1 = 0 

of course, but it also admits systematic improvements (cf I and 0 4 below). 

( 2 . 4 )  

( 2 . 5 )  

2.2. The ‘Jost’ n + 1 -P n recurrences 

In a reversed formulation of the recurrences ( 2 . 1 ) ,  the ‘Jost’ parameters $ , ( M )  and 
$,( M - 1 )  define G J (  M - 21, . . . and/or the determinantal counterpart 

$ J ( M  - k )  = Y M - k $ J J ( M )  + 8 M - k $ J ( M  - 1) 

det S‘o,k’ 
( - l ) k + l  ( - l ) k + l  

Y k  = det S(’*k)  8 k  = 
c M - 2 c M - 3 . .  9 C M - k  C M - 2 c M - 3 . .  . C M - k  

S ( j , k )  - Q [ M l  S ( j , k )  = Q [ M l  ( 2 . 6 )  
mk-1 - M+2+m-k,M+j mn M+2+m-k .M+l+n-k  

n = 1 , 2 ,  . . . , k - 2 

m = 1 , 2 ,  . . . , k - 1 

j = O ,  1 

k = 2 , 3 , .  . . , M 

to ( 2 . 2 ) .  The remaining two rows of ( 1 . 2 )  or ( 2 . 1 ) ,  

$ J ( - l ) = O  $ J ( - 2 )  = 0 

reflect the termination of recurrences at the origin. 

( 2 . 7 )  
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2.3. The matching of solutions 

In both $6 2.1 and 2.2, the direct generation of J(k) from the respective sequence of 
rows (2.1) is a recurrent algorithm. It is characterised by the minimal computer storage 
demands (the rigorous determinantal formulae (2.3) and (2.7) necessitate a big com- 
puter) and by the possible instabilities. 

We may suppress the latter shortcoming and, in analogy with the differential- 
equation algorithms (Korn and Kom 1968), match the 'regular' and 'Jost' solutions 
for an intermediate domain of indices. In the present truncated case, both these 
solutions contain two free parameters so that we need four conditions in general, 

$ R ( K )  = $Am i = 1,2,3,4.  (2.8) 

This equation also encompasses (2.3) and (2.7) as special cases. 

3. The general algebraic solution for the recurrences 

3.1. Diference equation in the asymptotic region 

In the lowest-order asymptotic approximation, the recurrences (1.2) read 

(M - 214) +4(M - 114)+ 6(m1$) +4(M + 114) + ( M  + 214) = 0 M >> 1 (3.1) 

and have been analysed in I .  The result (MI$)= (-l)M may easily be understood-it 
is sufficient to notice that the left-hand side of (3.1) defines just the fourth difference 
of the function (-l)M(MI$) (Kom and Korn 1968). The general solution of (3.1), 
(MI $) = (-  l )M ( a  + bM + c M 2  + d M 3 )  remains unphysical (non-normalisable) unless 
b = c = d = 0 (11, lemma 1). 

Without the inclusion of the corrections, we cannot distinguish between the 11 $ 1 1  < CO 

and lli,bll= CO cases. Thus, we have to replace (3.1) by an improved asymptotic form 
of the recurrences (1.2), 

c, .$( M - 2) + C,.$( M - 1 ) + Cy$( M )  + C&( M + 1 ) + C,[( M + 2) = 0 

i = 1,2, . . . , 5  M a 1  L>O p = ; 1 + :  

where [ ( M )  = (-l)'(M - 114) and a sample of the coefficients is given in table 1. 

Table 1. The first few coefficients in equation ( 3 . 2 )  (p=f l+a) .  

0 1 -4 6 -4 1 
1 -3 9 - P  2 p  - 4  1 - P  1 
2 2 - 2 p 2 + p - 5  4p2+ 1 - p - E -2p2 0 
3 0 4 P 2 b  - 1) 0 iP2(P - 1) 0 
4 - t p 2  fp4-1 2P 2 (1-p) 0 tP4 - f p 2  
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The solution of the difference equations (3.2) would be rather complicated in 
general. Fortunately, we may recall the estimate 

(I, theorem 3) and put ( ( N )  =exp(f(N)) ,  N > >  1. Then, we may expect that 

f( N )  = o( ~ 3 / 4 )  f y ~ )  = O ( N - I / ~ )  .P(N) = 0 ( ~ - 5 / 4 )  etc (3.4) 

and use the approximants (truncated Taylor expansions) 

n n K  
l !  K !  

(( M + n )  = (( M) +-t’( M) + . . . +- t (K)(  M) 

This is our main idea-in a combination of (3.2) and (3.5), we shall postulate the 
compatibility of errors (3.3), 

and search for the coefficients in the asymptotic series (1.3). 

3.2. The Jirst- and second-order solutions 

In the first non-trivial case with L= 1 and K =4, we insert (3 .5)  into (3.2), omit the 
higher-order corrections and get the differential equation 

d4 4 
-(( M) + ~ t (  M )  = 0. 
d M 4  (3.7) 

When we take into account also (3 .3)  and the corresponding error estimate, the 
differential equation (3.7) becomes reducible to the algebraic equation 

[(f’( M))4+4 /  MI( 1 + O( l/M1’4)) = 0 (3.8) 

since f” remains negligible. In the resulting wavefunction estimate 

the first sign ambiguity distinguishes between the decreasing and increasing components 
while the second merely reflects their double degeneracy. The asymptotics exhibit 
slow oscillations-this is a rather surprising phenomenon and contrasts with the smooth 
behaviour of the matrix elements. 

An interesting feature of (3.8) and (3.9) is a non-trivial observation that the 
second-order corrections drop out. Thus, we have to use the error term O( in (3.9). 
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3.3. The third-order solution 

On the 1 +O(M-’/‘) error level, we use (3.5) with K = 6  and (3.2) with L= 1 .  The 
resulting differential equation 

1-P 4 
i & ‘ 6 ’ ( M ) + & ( 4 ) ( M ) + - & ( 2 ) ( M ) + - & ( M ) = 0  M M 

and its asymptotic solution (3.9) with 

f(M)=iaM3/4+bM1/2+4~M”4+. . . 
P - f  a = (-4)’14 = *1 *i b = O  c = -  
4a 

(3.10) 

(3 .11)  

complement (3.7) and (3.9), respectively. They have the following three interesting 
features. 

(i)  The asymptotics of (NI +) depend now on (the inverse measure of anharmonic- 
ity of the potential). 

(i i)  In accord with our expectations, the fundamental set of the six independent 
solutions of the differential equation (3.10) of the sixth order degenerates to four 
independent solutions in the asymptotic region. 

(iii) The full degeneracy in the decreasing/increasing pair of solutions (i.e., in 
Ref( N ) )  remains unremoved as well. 

3.4. The fourth- and fifth-order solutions 

An inclusion of the O(M-3/4) corrections modifies (3.10) by the only additional term 
45‘3’( M)/  M which introduces the M-’ correction in f’( M) and adds a logarithmic 
correction to (3.1 1 ) .  Hence, the further corrections may be moved out of the exponen- 
tial-the algebra (fully analogous to the preceding cases) gives 

(3.12) 

Thus, the further corrections appear in the normalisation factor 2 = 
constant + O( M-ll4) and may be made arbitrarily small by our choice of the parameter 
M >> 1 .  

The first non-trivial contribution to the expansion of Z necessitates L = 2 in (3.2). 
Moreover, in contrast to the preceding cases, we must also incorporate the second 
derivativC f”( M )  into the formulae. Then, from the related differential equation 

p = $ l + i  4 4p-2-E 
M M M2 

we obtain 

Z(M) = I + A M - I / ~ + O ( M - ~ / ~ )  

A = U[&(  1 + p ) 2  + p -%-:E] 

(3.13) 

(3.14) 
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in a straightforward way. There appears an explicit 1 and energy dependence here-our 
asymptotic formula (3.12) + (3.14) contains all the relevant parameters now. 

3.5. The higher-order corrections 

For K 3 9 ,  most of our conclusions will remain unchanged. The formulae become 
rather clumsy-let us close this section by the K = 19 example, namely, by the differen- 
tial equation 

2 ’ 8(4‘-’ - 1)p -4 ‘+  5 - p p+= 1-p c 5 - 1 5 ( 2 1 + 1 )  

( 2 t ) !  r = O  (2 t+  I)! +- c M ‘ = I  

1 2 ( 4 ‘ - 5 ) ( 1 - p ) + 5 + p - 2 p p - 4 p 2 t , , , ,  
+ S E  r = 1  ( 2 t ) !  

1 + - [ p - 4p * - ( p - 1 ) ( p - t )  $1 .p 
2~~ 

+(-+ + M4 t = O .  (3.15) 

Its conversion into an algebraic problem would give the coefficient Z in ( M  - 11 4 )  
(3.12) valid up to the error factor 1+O(l /M13’4) .  

4 4 p - 2 - E  2 p 2 + 2 ( 1 - p ) p + p - 3  
M M2 

4. Properties of the ‘regular’ solutions 

In the truncated problem of § 2, full symmetry between the ‘regular’ and ‘Jost’ solutions 
occurs. In the limit M + CO, only the ‘regular’ formula (2.2) remains valid. Fortunately, 
we may construct the ‘Jost’ solutions by the asymptotic expansion method of § 3. Thus, 
the formal symmetry may be restored provided only that we replace the limiting 
boundary condition (2.3) by the matching (2.8) at some sufficiently large but fixed 
values of the matching points Ki  = MO - i, MO >> 1 .  

In the regular solution &k), the random round-off error in &O) and $( 1 )  introduces 
a quickly increasing error into the higher components. For k >> 1, we must compute 
them directly from the determinantal formula (2.2) and keep the unstable asymptotic 
behaviour of the n + n + 1 recurrences in mind. This is fully analogous to the problem 
encountered in solving the differential equation (e.g., Acton 1970)-we must suppress 
the non-physical components of +. 

4.1. Elimination of the growing exponentials in the asymptotic region-the mechanism 

For almost all energies and projections $( 1 ) /  &O), the physical normalisability 
requirement 

f a -  \ 112 
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will be violated by the k >> 1 part of the ‘regular’ solution $R(k) = $( k )  (2.2), 

@R( k )  = ( ey‘k’(A COS a (  k )  + B sin 8(  k ) ) [  1 + O(exp( -2y( k ) ) ) ]  

y ( k ) = $ k 3 ’ 4 + 4 ( p - ~ ) k 1 / 4 - ~ l n  k + .  . . (4.2) 

S ( k ) = ~ k 3 / 4 - 4 ( p - ~ ) k l / 4 + ,  . , 
(cf (3.12)). Vice versa, we get the physical energy E = Eo and ratio q = I,hR(l)/I,hR(0) = qo 
precisely for the physical bound states (LR( k )  = ( k / $ ) ,  i.e., for 

A(E0,qo) = 0 HEO, 4 0 )  = 0 (4.3) 

(cf also equation (4.7) below). In their vicinity, we neglect the exponential corrections 
O(exp(-Zy)) in (4.2), denote vi = (-l)ki$R(ki) exp(-yi), yi = y ( k i ) ,  Si = S ( k i )  and 
re-express A = A( k )  and B = B (  k )  as functions of U ,  and U ,  for some pair of indices r > s, 

a,, = 8, - 8,. 
(4.4) 

Now, we may rewrite (4.3) as a condition A2+ B 2  = 0, i.e., 

U ;  + uf - 2u,u, cos 6, = 0 

which implies that U ,  = U ,  = 0 since S,, = a (  k, - k , ) /  k:l4 is non-zero for k, >> 1. Thus, 
with k, = k, + 1, we have merely rederived the truncation requirement (2.3) in a non- 
variational manner. 

In an alternative formulation, we may consider E # Eo, q # qo and introduce also 
a discrete analogue of the derivatives which depend on the functions y ( k )  and S ( k ) ,  

r f  s. w ‘ l )  = ( U ,  - U ,  cos &,)/sin a,, 
Then, it is easy to verify that 

and see that the lengths of vectors (A, B )  and ( U , ,  wit') are equal. This simplifies (4.4) 
and clarifies the role of the angle S ( k )  ‘mixing’ the non-physical ‘regular’ solution U 

with its first difference or ‘derivative’ w ( l ) .  

We may conclude that the physical asymptotics for the ‘regular’ solutions may be 
represented by a pair of requirements 

U ,  = o(exp(-k:/’)) wi:) = O(exp(-k:/’)), (4.6) 

In principle, they determine qo and energy Eo with an arbitrary accuracy limited only 
by our choice of the finite matching points k, >> 1 and k, >> 1. 

4.2. Physical wauefunctions-the structure 

At the physical values E = Eo and q = qo, equation (4.2) must be replaced by the 
A = B = 0 asymptotic estimate 

(4.7) $ R ( k ) = ( k l @ ) = ( - ~ ) ~  exp(-y(k))(C cos s ( ~ ) + D  sin ~ ( k ) ) .  
In essence, this may be interpreted as a matching condition (2.8) where the right-hand- 
side expression represents the ‘Jost’ asymptotic solution (1.3). 
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Analysing (4.7) in more detail, we may denote 

and obtain an analogue of (4.4), 

With the two particular choices of ( r ,  s )  = ( 2 , l )  and (4,3),  we may eliminate C and 
D here, 

sin Sz, (4.9) 

This relation characterises the physical states and, in the leading-order approximation, 
it acquires the form 

(4.10) 

obtained (obtainable) also in the matrix continued-fractional formalism (111). 
The numerical test of our non-truncation matching condition (4.7) is presented in 

table 2. We have employed the leading-order precision only, so that our results also 
conform with the simplified equation (4.10). We observe that our energies improve 
slightly the MO-dimensional diagonalisation for the dimensions MO = O( 1 )  only, and 
reproduce it for the larger MO. 

Table 2. Coincidence of energies from the boundary condition (4.7) (X, = X, = X,) with 
their variational counterparts (three dimensions, ground state, p = 1 ,  E,,,,, = 4.648 8127). 

MO Present result Variational result 
~~~~ 

9 4.650 924 4.650 939 
10 4.649 433 4.649 440 
11  4.648 919 4.648 920 
12 4.648 824 4.648 824 
13 4.648 819 4.648 819 

4.3. Matching conditions as diflerence relations 

When we try to understand or re-interpret the matching criteria (4.9) or (4.10), we 
may asume that Xi # 0 is a smooth function of the variable ki. Then, recalling (4.5) 
and the definition 

Y!:) = (x, - X, cos G,s)/sin 

we may derive the A = B = 0 formula 

(4.11) 

and eliminate the unknown parameters C and D again. 
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With the two pairs of subscripts ( r ,  s )  and ( t ,  r ) ,  the two rows of the resulting relations 

cos 6, -sin as)( X ,  ) - (cos 8, -sin a,)( 1: ) 
sin S, cos 6, Y ( ~ )  rs  - sin 6, cos S ,  Y(’) 

(4.12) 

remain linearly dependent. Thus, we may replace 6, by 6, +a,, and get the relation 

X ,  = ( Y::)-  Y::) cos &,)/sin tjrS. (4.13) 

It is equivalent to a row of (4.9) and connects the physical ‘regular’ solution with its 
second derivative in the limit 6,+0. It may again be used as a matching condition. 

To conclude this section, let us summarise: for the large matching indices, MO >> 1, 
the ratio between the non-physical and physical exponential factors is an extremely 
large number. Unless we have a computer with roughly of the order of Mi’4 digits, 
we must expect an ‘underflow’ C = D = 0 (within the round-off errors) and return to 
the truncation prescription (2.3). Vice versa, whenever we want to exceed the precision 
of the M,-dimensional diagonalisation, we must use small MO and improve the 
asymptotic ‘Jost’ solution for the matching conditions. Otherwise, the physical require- 
ment A = B = 0 will remain an ill-conditioned equation (see the appendix). 

5. Recurrent construction of the physical bound states 

5.1. Numerical stability of the backward n + 1 + n recurrences 

Numerical tests indicate that the recurrences (1.2) are stable in the decreasing n + 1 + n 
‘Jost’ direction. In the n >> 1 asymptotic region, this may be proved directly. With the 
fundamental set of solutions 

&dk) = exp(-y(k)) cos 6 ( k )  

c L d k )  = exp(+y(k)) cos S ( k )  

h ( k )  = exp(-y(k)) sin 6 ( k )  

( L ( d k )  =exp(+y(k))  sin 6 ( k )  
(5.1) 

we may rewrite any trial initialisation of (1.2) in the form of a superposition 

h ( k )  = A k ) ( k ) +  B+ho,(k)+ C h , ( k ) +  W ( * , ( k )  k = N >> 1. (5.2) 

Then, using the asymptotic formulae of § 3 (e.g., (3.12)), it is easy to show that the 
non-physical components &, , (k )  and ~ , h ( ~ , ( k )  of I,!I disappear for each C f 0 or D # 0 
after a few iterations. Hence, the ‘Jost’ initialisation of (1.2) is arbitrary-it gives 
A = B = O.(the physical ‘Jost’ solutions $,I””’( k ) )  for all the indices k S MO, provided 
only that MO<< N .  The two-parametric family +,( k )  which we obtain is a full analogue 
of the truncated example of § 2. 

In the asymptotic region, the explicit form (3.12) of ‘Jost’ solutions enters the 
matching conditions (say, (4.7) or (A.l))  in the y, 6-parametrised form. Now, we may 
preserve this notation and define 

even for the recurrently computed (numerical) ‘Jost’ solutions (5.2) and in the non- 
asymptotic region. Up to the differences of the asymptotic order O(ln k ) ,  the new 
definition will coincide precisely with the one given in equation (4.2). 
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5.2. The recurrent eigenvalue/ eigenvector algorithm-'Jost function' 

Due to the monotonic n dependence of the coefficients in (1 .2) ,  we may expect the 
numerically stable behaviour of the backward n + 1 + n recurrences even near the 
origin. Indeed, in contrast to our diff erential-equation method guide, our difference 
equation (1.2) does not exhibit any singularity there. Thus, the n + 1 + n recurrent 
evaluation of the 'Jost' solutions may proceed up to n = 0 and be complemented simply 
by the physical boundary condition ( 2 . 7 )  at the origin. 

The related technicalities become extremely simple now. The two different initial 
values (5 .2)  generate the linearly independent pair of normalisable solutions I)$"'( ri) 
and $ i b ' ( n ) ,  n 2 0 ,  and the remaining (first two) rows of ( 1 . 2 )  again represent the 
boundary conditions ( 2 . 7 ) .  Thus, the physical wavefunctions will have the general form 

( n l + )  = C+p'( n )  + o+jb'( n )  n 2 0 .  ( 5.4)  

Its insertion into ( 2 . 7 )  gives the two-dimensional eigenvalue/eigenvector equation 

T2, = b,+i"(O) + al$y)( 1) + b,+!"(2) + C1$i1)(3). 

This specifies the non-zero coefficients C and D for a discrete set of physical binding 
energies only. 

Obviously, the energies may be determined numerically as roots of the secular 
equation 

We may notice that this secular determinant represents a direct generalisation of the 
Jost function (Newton 1965) to the present difference equation case (with quotation 
marks). 

The practical test of our algorithm and a sample of the numerical results are 
displayed in table 3.  It illustrates both the stability of the energies and their quick rate 
of convergence. In principle, this convergence may be accelerated by choosing the 
initial values ( 5 . 2 )  compatible with the physical requirement ( 4 . 7 ) .  Then, a smaller 
dimension N or MO (number of iterations) will be needed in the computations. In 
this sense, our method should be generalised in the future-it is a significant improve- 
ment on the common truncation technique. 

Table 3. Quick rate of convergence of energies E computed as roots of the 'Jost function' 
(5.6) (M, ,=O) .  At n = N, the initialisation of $j" .b ' (n)  is random. 

N E - E,,,,, ( P  = 1) E - E,,,,, ( P  = 0) 

10 -0.80 X -0.26 X 

15 +0.23 x lo-* -0.84 x lo-* 
20 +0.48 x lo-'' +OXO x 
25 o(10-13) o(10-13) 
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Appendix. Matching conditions once more 

When we recall the algebraic solution of 0 3 or its recurrent and reparametrised form 
of 0 5.1, we may rewrite the matching conditions (2.8) in the 4 x 4  matrix form 

$R( ki) = AGi,+ BGj2 + CGj3 + DGi4 i = 1,2,3,4 

G,, = exp( 7,)  cos 6, Gi2 = exp( y,)  sin ai ('41) 

Gi3 = exp( - y i )  cos 6, Gi4 = exp( - y,)  sin 6,. 

By algebraic means, the corresponding inversion G-' may be performed without any 
loss of precision. 

First, let us evaluate the determinant of the matrix G in (Al),  

det = ~ 1 2 3 4 + 2 1 3 4 2 + ~ 1 4 2 3  

z+l= 2 cosh( Y j k  + y j l )  sin 6, sin 6 k l  

6.. = 6. - S .  Yij = Yi - 'Yj V I J  

and notice that the cancellations take place here. Indeed, the leading-order asymptotic 
0 ( M ; ' I 2 )  component of (A2) becomes equal to zero as a consequence of the simple 
trigonometry, 

det G = 2 cosh( 7 1 3  + 724) sin SI2 sin 634+. . . 
= cosh( ~ 1 3  + ~ 2 4 )  COS( 612-  634)  -. . 
= 2 sinh2[j( y13 + y24)]2 sin2[i( a12 + 634)] + . . . . (A31 

Next, the asymptotic estimates 

yi j  = ( i  - jXp + bp3) 

p = constant/ My4 
6, = ( i - j ) (p  - bp3) 

(A41 
b = constant x (1 + O( p ) )  

based on (3.12) imply that the coefficient in (A3) is also equal to zero in the asymptotic 
region, 

det G = 4 sinh2[i(4p +4bp3)] sin2( p - bp3) +. . . 
= 16[sinh(2p+2bp3) sin(p - bp3)  

+ sinh( p + bp3) sin(2p + 2bp3)] sinh( p + bp3) sin( p - bp3) 

x {sinh2[i( p + bp3)] + sin2[;( p - bp3)]} = 32p6( 1 + O( p 3 ) ) .  (A51 

Thus, the resulting determinant is of the order of magnitude O(M,3'2). This would 
deteriorate the quality of a numerical solution of equation (Al).  

Of course, the algebraic inversion will be equivalent to equations (4.9) or (4.13). 
For completeness, let us give the resulting formulation of the physical requirement 
A = B = O ,  

GI, = sin 62 sin exp( y2  - y3  - y4) + sin 

+sin a4 sin 6 2 3  exp( y4 - y2  - y3)  

sin 642 exp( y3 - y4 - y2)  
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and notice that the omitted coefficients may be generated by a sequence of replacements 
* - 

Gy+l = GIj (subscript j + 1 + subscript j )  j = l , 2 , 3  

= Glj (sin 6, + cos s,, m z j )  j = 1,2 ,3 ,4 .  
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